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ABSTRACT

VisIt is a popular open source project for visualizing and analyzing
data. It owes it success to its foci of data understanding, large data
support, and providing a robust and usable product, as well as it un-
derlying design that fits today’s supercomputing landscape. In this
short paper, we describe the VisIt project and its accomplishments.

1 INTRODUCTION

This is V8, Tuesday at 12:05
A dozen years ago, when the VisIt project started, a new high

performance computing environment was emerging. Ever increas-
ing numbers of end users were running simulations and generating
large data. The rapidly growing number of large data sets prevented
visualization experts from being intimately involved in the visual-
ization process; it was thus necessary to put tools in the end users
hands. Almost all end users were sitting in front of high-end desk-
top machines with powerful graphics cards. But their simulations
were being run on remote, parallel machines and generating data
sets too large to be transferred back to these desktops. Worse, these
data sets were too large to even process on a single serial machine.
Further, the types of visualization and analysis users wanted to per-
form varied greatly; users needed many techniques for understand-
ing diverse types of data, with use cases ranging from confirming
that a simulation was running smoothly to communicating the re-
sults of a simulation to a larger audience to gaining insight via data
exploration.

VisIt was developed in response to these emerging needs. It was
(and is) an open source project for visualizing and analyzing ex-
tremely large data sets. The project has evolved around three focal
points: (1) enabling data understanding, (2) scalable support for ex-
tremely large data, and (3) providing a robust and usable product for
end users. In turn, these focal points have made VisIt very popular
for visualizing and analyzing the data sets from the world’s largest
supercomputers. VisIt has been downloaded hundreds of thousands
of times and received a 2005 R&D100 award for the tool’s capabil-
ities in understanding large data sets.

This short paper aims to explore the VisIt project’s focal points
(§2), design (§3), and successes (§4).
2 FOCAL POINTS

Enable data understanding: A common misnomer about
VisIt is that it is a tool strictly for making pretty pictures. Its un-
fortunate choice of name, now solidified through name recognition,
pigeonholes the listener into thinking it is dedicated solely to visu-
alization. In reality, VisIt focuses on five primary use cases:

1. Visual exploration: the user applies a series of visualization
algorithms to “see” what is in their data.

2. Debugging: the user applies algorithms to find a “needle in
a haystack,” for example hot spots in a scalar field or cells
that have become twisted over time. The user then asks for
debugging information in a representation that is recognizable

to their simulation (e.g. cell X in computation domain D has
a NaN).

3. Quantitative analysis: the quantitative capabilities range from
simple operations, such as integrating densities over a region
to find its mass, to highly sophisticated operations, such as
adding a synthetic diagnostic to compare to experimental data.

4. Comparative analysis: the user compares two related simu-
lations, two time slices from a single simulation, simulation
and experiment, etc. The taxonomy of comparative analysis
has three major branches, each of which is available in VisIt:
Image-level comparisons place things side-by-side and has
the user detect differences visually. Data-level comparisons
put multiple fields onto the same mesh, for example to create
a new field that contains the difference in temperature between
two simulations for further analysis. Topological-level com-
parisons detect features in the data sets and then allow those
features to be compared.

5. Communication: the user wants to communicate properties of
their data to a large audience. This may be via movies, via
images that are inserted into a PowerPoint presentation, or via
one dimensional curves that are placed into a journal article.

Support for large data: The definition of “large” is relative to
the resources for processing the data. For the VisIt project, the tar-
get was data whose full resolution could not fit into primary mem-
ory of a desktop machine. Of course, the amount of data to load
varies by situation: can we process time slices one at a time? how
many variables do we need to load? do we need to load multiple
members of an ensemble simultaneously? For VisIt, the goal was to
provide an infrastructure that could support any of these use cases,
and it primarily uses parallelism to achieve this goal.

Provide a robust and usable product for end users: Enabling
data understanding for large data is a daunting task requiring a sub-
stantial investment. To amortize this cost, the project needed to be
delivered to many user communities, across both funding groups
and application areas.

The “one big tool” strategy provides benefits to both users and
developers. Compared to a smaller, tailored effort, users are able
to access more functionality as well as better underlying algorithms
for processing data. For developers, the core infrastructure under-
goes an economy of scale, where many developers can collectively
develop a superior core infrastructure than they would be able to in-
dependently. But the “one big tool” approach has negative aspects
as well. Users are provided an overly rich interface where many
features may be meaningless to them and simply serve as clutter.
And developers must deal with a less nimble code base where mak-
ing functionality changes sometimes leads to unexpectedly large
coding efforts.

Further, delivering a product to a large end user community in-
curs significant cost in and of itself: the VisIt project has almost a
thousand pages of manuals, several thousand regression tests that



are run every night, a sophisticated build process, and a variety
of courses designed to teach people to how to use the tool. It re-
quires multi-institution coordination for release management, for
responses to user requests, and for software development. And, of
course, the source code itself must be well documented to ease bar-
riers to entry for new developers.

The developers of the VisIt project decided to “go big”: to pay
the costs associated with large user and developer bases in the hopes
of writing a tool that would be usable by many and developed by
many.

3 DESIGN

In this section, we describe several facets of VisIt’s design: §3.1 de-
scribes VisIt’s architecture, §3.2 describes its parallelism approach,
and §3.3 describes its user interface concepts.

3.1 Architecture

VisIt employs a client/server design, where both client and server
are made up of multiple programs (see Figure 1). Client-side pro-
grams, typically run on the user’s local desktop, are responsible for
both user interface and rendering, where interactivity is paramount.
The client-side programs are:

• gui: A graphical user interface built using the Qt widget set.

• cli: A command line user interface built using the Python lan-
guage.

• viewer: A program responsible for visual display of data.

• Custom, streamlined user interfaces can also be added to
VisIt. The interfaces can either complement the gui and cli
or replace them altogether.

Server-side programs, typically run on a remote supercomputer that
can access the user’s data in a parallel fashion, are responsible for
processing data. The server-side programs are:

• engine: The program that applies visualization and analysis
algorithms to large data using parallel processing.

• mdserver: A program that browses remote file systems and
reads meta-data.

• vcl: VisIt Component Launcher, a program whose sole job
is to launch other programs. Without this program, the user
would have to issue credentials for the launch of each program
on the remote machine.

While the configuration in Figure 1 is the most common, other
variants are also used:

• Data is located on the local machine, so all programs, includ-
ing the server-side programs, run on the local machine.

• The client-side programs run on a remote machine. This mode
occurs most often in conjunction with graphical desktop shar-
ing, such as VNC.

• Multiple servers are run simultaneously to access data on mul-
tiple remote machines.

• VisIt is run entirely in “batch mode.” The gui program is not
used and the viewer program runs in a windowless mode.

• VisIt’s client-side programs are coupled with a simulation
code and data is processed in situ. In this case, the simula-
tion embeds a copy of the engine program.

Figure 1: Diagram of VisIt programs and their communication.

3.2 Parallelism

VisIt supports multiple processing modes – multi-resolution pro-
cessing, in situ processing, and out-of-core processing – but its
most frequent mode is pure parallelism, where the data is parti-
tioned over its MPI tasks and is processed at its native resolution.
Most visualization and analysis algorithms are embarrassingly par-
allel, meaning that portions of the data set can be processed in any
order and without coordination and communication. For this case,
VisIt’s core infrastructure manages the partitioning of the data and
all parallelism. For the non-embarrassingly parallel case, for ex-
ample streamline calculation or volume rendering, algorithms are
able to manage the parallelism themselves and can opt to perform
collective communication if necessary.

VisIt’s most typical visualization use case has a user loading a
large data set, applying operations to reduce the data size, and then
transferring the resulting data set to the local client for interactive
rendering using the local graphics cards. However, some data sets
are so large that their reduced forms are too large for a desktop
machine. This case requires a backup plan. VisIt’s backup plan is
to switch to a parallel rendering mode: data is left on the parallel
server, each MPI task renders its own piece, and the resulting sub-
images are composited together. The final image is then brought
back to the viewer and placed in the visualization window, as if it
was rendered with the graphics card. Although this process sounds
cumbersome, switching to parallel rendering mode is transparent to
end users and frame rates approaching ten frames per second can
be achieved.

3.3 User Interface Concepts

VisIt has five primary user interface concepts:

Type Description Number
Database How to read from a file ˜115
Operator How to manipulate data ˜50

Plot How to render data ˜15
Expression How to create new derived quantities ˜190

Queries How to extract quantitative info ˜90
and debugging info



A strength of VisIt’s user interface concepts is its interoperabil-
ity. Each plot can work on data directly from a file (databases) or
from derived data (expressions), and can have an arbitrary number
of data transformations or subselections applied (operators). Once
the key information is extracted, quantitative or debugging informa-
tion can be extracted (queries) or the data can be rendered (plots).
Consider an example: a user reads from a file (database), calculates
the λ -2 metric for finding high vorticity (expressions), isolates out
the regions of highest vorticity (operators), renders it (plots), then
calculates the number of connected components and statistics about
them (queries).

VisIt makes it easy to add new types of databases, operators, and
plots. The base infrastructure deals with these concepts as abstract
types; it only discovers the concrete databases, operators, and plots
at startup, by loading them as plugins. Developing new function-
ality translates to developing a new plugin. Further, VisIt aids the
development process. It provides an environment for defining a plu-
gin and then performs code generation. After the developer sets up
the options for the plugins, VisIt generates attributes for storing the
options, user interface components (Python, Qt, and Java), the plu-
gin bindings, and C++ methods with “dummy” implementations.
The developer then replaces the dummy implementations with their
intended algorithm, file reading code, etc.

3.4 The size and breadth of VisIt
Although it is not discussed in depth in this paper, VisIt has an ex-
tensive list of features. Its ˜115 file format readers include support
for many HDF5- and NetCDF-based formats, CGNS, and others,
including generic readers for some types of binary and ASCII files.
Its ˜60 operators include transformations such as projections, scal-
ing, rotation, and translation, coordinate transformations, data sub-
setting, such as thresholding and contouring, and spatial threshold-
ing, such as limiting to a box or a plane, among many others. Its ˜90
queries allow users to get customizable reports about specific cells
or points, integrate quantities, calculate surface areas and volumes,
insert synthetic diagnostics/virtual detectors, and much more. Its
˜190 expressions go well beyond simple math. For example, one
can create derived quantities like “if the magnitude of the gradient
of density is greater than this, then do this, else do that.”

And many features do not fit into the five primary user inter-
face concepts. There is support for positioning light sources, mak-
ing movies (including MPEG encoding), eliminating data based on
known categorizations (e.g. “show me only this refinement level”
from an AMR mesh), and having plots cast a shadow, just to name
a few. In total, VisIt is approximately one and a half million lines
of code. Further, VisIt is built on top of many third party libraries,
including the Visualization ToolKit (VTK), which contains many
additional visualization algorithms.

4 SUCCESSES

The VisIt project has produced several forms of success: providing
a scalable infrastructure for visualization and analysis, populating
that infrastructure with cutting-edge algorithms, informing the lim-
its of new hardware architectures, and, most importantly, enabling
successes for the tool’s end users. We summarize some of the most
noteworthy highlights in the subsections below.

4.1 Scalability successes
In 2009, a pair of studies were run to demonstrate VisIt’s capabil-
ities for scalability and large data. In the first study, VisIt’s infras-
tructure and some of its key visualization algorithms were demon-
strated to be weakly scalable (see Figure 2). This demonstration led
to be VisIt being selected as a “Joule code,” a formal certification
process by the US Office of Management and Budget to ensure that
programs running on high end supercomputers are capable of using
the machine efficiently. In the second study, VisIt was scaled up to

tens of thousands of cores and used to visualize data sets with tril-
lions of cells per time slice (see Figure 3). This study found VisIt
itself to perform quite well, although overall performance was lim-
ited by the supercomputer’s I/O bandwidth. Both studies are further
described in [5].

Figure 2: Contouring and volume rendering from a Denovo radia-
tion transport simulation, produced by VisIt using 12,270 cores of
JaguarPF as part of the “Joule code” certification, which showed
that VisIt is weakly scalable.

Figure 3: Contouring and volume rendering of a two trillion cell
data set produced by VisIt using 32,000 cores of JaguarPF as part
of a study on scalability at high levels of concurrency and on large
data sets. The volume rendering was reproduced in 2011 on a one
trillion cell version of the data set using only 800 cores of the TACC
Longhorn machine.

4.2 A repository for large data algorithms
Many advanced algorithms for visualizing and analyzing large data
have been implemented inside of VisIt, making them directly avail-
able to end users. Notable algorithms include:

• A novel streamline algorithm that melds two different par-
allelization strategies (“over data” and “over seeds”) to re-
tain their positive effects while minimizing their negative
ones [13];

• A volume rendering algorithm that handles the compositing
complexities inherent to unstructured meshes while still de-
livering scalable performance [3];

• An algorithm for identifying connected components in un-
structured meshes in a distributed memory parallel setting on
very large data sets [8];

• An algorithm for creating crack-free isosurfaces for adaptive
mesh refinement data, a common mesh type for very large
data [16].

• A well-performing material interface reconstruction algo-
rithm for distributed memory parallel environments that bal-
ances concerns for both visualization and analysis [11]; and



• A method for repeated interpolations of velocity fields in un-
structured meshes, to accelerate streamlines [7].

Further, VisIt has been the subject of much systems research, in-
cluding papers on the base VisIt architecture [4], VisIt’s “contract”
system which allows it to detect the processing requirements for the
current operations and adaptively apply the best optimizations [2],
and a description of the adapter layer that allows VisIt to couple
with a simulation and run in situ [17].

4.3 Supercomputing research performed with VisIt
As the landscape for parallel computers changes, VisIt has been
used to test the benefits of emerging algorithms and hardware fea-
tures, including:

• Studying modifications to collective communication patterns
for ghost data generation to be suitable for out-of-core pro-
cessing, thereby improving cache coherency and reducing
memory footprint [9];

• Studying the viability of hardware accelerated volume ren-
dering on distributed memory parallel visualization clusters
powered by GPUs [6];

• Studying the benefits of hybrid parallelism for streamline al-
gorithms [1]; and

• Studying the issues and strategies for porting to new operating
systems [12].

4.4 User successes
Of course, the most important measure for the project is helping
users better understand their data. Unfortunately, metrics in this
space are difficult:

• Some national laboratories keep statistics on their user com-
munity: the United States laboratory Lawrence Livermore
has approximately 300 regular users, the United Kingdom’s
Atomic Weapons Establishment (AWE) has approximately
100 regular users, and France’s Atomic Energy Commission
(CEA) at CESTA has approximately 50 regular users. Other
laboratories, like Oak Ridge and Lawrence Berkeley, view
VisIt as their primary visualization and analysis tool, but don’t
keep user statistics.

• In terms of monetary support for developing VisIt, the US De-
partment of Energy funds VisIt development through its Of-
fice of Science, National Nuclear Security Agency, and Office
of Nuclear Energy. Both of the US National Science Foun-
dation (NSF) XD centers on visualization actively deploy and
support VisIt as well.

• Another method for measuring usage is studying affiliations
of users who ask questions on the mailing list. The majority of
these inquiries come from none of the previously mentioned
institutions, indicating that usage goes beyond these sites.

While images from VisIt are regularly used without citation,
there have been several notable instances of publications using VisIt
to perform novel analysis:

• Analysis of laser wakefield simulations often amounts to find-
ing key particles. In [14], query-driven visualization tech-
niques are used to search through terabytes of data to locate
these key particles in as little as two seconds.

• Simulations often deal with idealized meshes. In [10], VisIt’s
comparative capabilities are used to quantify the importance
of engineering defects when differencing as-built and as-
designed models.

• The toroidal magnetic fields found in tokamaks are analyzed
by studying flow through a cross-section and the topological
“islands” this flow traces out. In [15], the authors describe
how they perform this analysis using VisIt’s streamline code.

5 FUTURE CHALLENGES

Although VisIt is well suited for today’s supercomputing environ-
ment, the project will face many challenges in the future. In the
short term, I/O limitations will force visualization and analysis ac-
tivities to de-emphasize I/O. The VisIt development team has in-
vested in pertinent techniques, such as multi-resolution processing
and in situ, but these techniques will need to be further hardened to
support regular production use. In the longer term, power limits will
constrain data movement, forcing much processing to occur in situ
on novel architectures, such as GPU accelerators. Unfortunately,
VisIt’s existing in situ implementation may be mismatched for this
many-core future, for two reasons. First, although VisIt can be eas-
ily multi-threaded using a pthreads or OpenMP-type approach, this
approach may not be able to take advantage of these architectures.
The many-core future may require CUDA or OpenCL-type lan-
guages; migrating the VisIt code base to this setting would be a sub-
stantial undertaking. Second, although VisIt has been demonstrated
to work well at high levels of concurrency, some of its algorithms
involve large data exchanges. Although these algorithms perform
well on current machines, they would violate the data movement
constraints on future machines and would need to be re-designed.

6 SUMMARY

The VisIt project’s three focal points – understanding data, large
data, and delivering a product – together form a powerful environ-
ment for analyzing data from HPC simulations. It is used in varied
ways: it enables visualization scientists, computational code devel-
opers, and the physicists that run these codes to perform a broad
range of data understanding activities, including debugging, mak-
ing movies, and exploring data. The user interface portion of its
design provides a powerful paradigm for analyzing data while the
data processing portion of its design is well suited for big data. This
in turn has led to many successes: in scaling up to high levels of
concurrency and large data sizes, in providing a “home” for large
data algorithms, in understanding how to best use supercomput-
ers, and, most importantly, in helping users understand their data.
Further, despite significant upcoming changes in supercomputing
architecture, VisIt’s future appears bright, as it enjoys vibrant user
and developer communities.
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